Information on Result #546743
There is no linear OA(3179, 217, F3, 117) (dual of [217, 38, 118]-code), because residual code would yield OA(362, 99, S3, 39), but
- the linear programming bound shows that M ≥ 8341 316354 832968 167115 756462 681271 298651 307150 960469 759639 / 19004 191492 894766 602246 400000 > 362 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3180, 218, F3, 118) (dual of [218, 38, 119]-code) | [i] | Truncation | |
2 | No linear OA(3181, 219, F3, 119) (dual of [219, 38, 120]-code) | [i] | ||
3 | No linear OOA(3180, 217, F3, 2, 118) (dual of [(217, 2), 254, 119]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3181, 217, F3, 2, 119) (dual of [(217, 2), 253, 120]-NRT-code) | [i] | ||
5 | No linear OOA(3179, 217, F3, 2, 117) (dual of [(217, 2), 255, 118]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3179, 217, F3, 3, 117) (dual of [(217, 3), 472, 118]-NRT-code) | [i] | ||
7 | No linear OOA(3179, 217, F3, 4, 117) (dual of [(217, 4), 689, 118]-NRT-code) | [i] | ||
8 | No linear OOA(3179, 217, F3, 5, 117) (dual of [(217, 5), 906, 118]-NRT-code) | [i] | ||
9 | No digital (62, 179, 217)-net over F3 | [i] | Extracting Embedded Orthogonal Array |