Information on Result #546771

There is no linear OA(3187, 213, F3, 123) (dual of [213, 26, 124]-code), because residual code would yield OA(364, 89, S3, 41), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3188, 214, F3, 124) (dual of [214, 26, 125]-code) [i]Truncation
2No linear OA(3189, 215, F3, 125) (dual of [215, 26, 126]-code) [i]
3No linear OOA(3188, 213, F3, 2, 124) (dual of [(213, 2), 238, 125]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3189, 213, F3, 2, 125) (dual of [(213, 2), 237, 126]-NRT-code) [i]
5No linear OOA(3187, 213, F3, 2, 123) (dual of [(213, 2), 239, 124]-NRT-code) [i]Depth Reduction
6No linear OOA(3187, 213, F3, 3, 123) (dual of [(213, 3), 452, 124]-NRT-code) [i]
7No linear OOA(3187, 213, F3, 4, 123) (dual of [(213, 4), 665, 124]-NRT-code) [i]
8No linear OOA(3187, 213, F3, 5, 123) (dual of [(213, 5), 878, 124]-NRT-code) [i]
9No digital (64, 187, 213)-net over F3 [i]Extracting Embedded Orthogonal Array