Information on Result #546786
There is no linear OA(3189, 201, F3, 126) (dual of [201, 12, 127]-code), because residual code would yield OA(363, 74, S3, 42), but
- the linear programming bound shows that M ≥ 12 034337 282839 174538 591498 251772 066709 / 10 069525 > 363 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3190, 202, F3, 127) (dual of [202, 12, 128]-code) | [i] | Truncation | |
2 | No linear OA(3191, 203, F3, 128) (dual of [203, 12, 129]-code) | [i] | ||
3 | No linear OOA(3190, 201, F3, 2, 127) (dual of [(201, 2), 212, 128]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3191, 201, F3, 2, 128) (dual of [(201, 2), 211, 129]-NRT-code) | [i] | ||
5 | No linear OOA(3189, 201, F3, 2, 126) (dual of [(201, 2), 213, 127]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3189, 201, F3, 3, 126) (dual of [(201, 3), 414, 127]-NRT-code) | [i] | ||
7 | No linear OOA(3189, 201, F3, 4, 126) (dual of [(201, 4), 615, 127]-NRT-code) | [i] | ||
8 | No linear OOA(3189, 201, F3, 5, 126) (dual of [(201, 5), 816, 127]-NRT-code) | [i] | ||
9 | No digital (63, 189, 201)-net over F3 | [i] | Extracting Embedded Orthogonal Array |