Information on Result #546787
There is no linear OA(3190, 206, F3, 126) (dual of [206, 16, 127]-code), because residual code would yield OA(364, 79, S3, 42), but
- the linear programming bound shows that M ≥ 1127 088319 766791 916099 558651 458916 971683 / 304 050635 > 364 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3191, 207, F3, 127) (dual of [207, 16, 128]-code) | [i] | Truncation | |
2 | No linear OA(3192, 208, F3, 128) (dual of [208, 16, 129]-code) | [i] | ||
3 | No linear OOA(3191, 206, F3, 2, 127) (dual of [(206, 2), 221, 128]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3192, 206, F3, 2, 128) (dual of [(206, 2), 220, 129]-NRT-code) | [i] | ||
5 | No linear OOA(3190, 206, F3, 2, 126) (dual of [(206, 2), 222, 127]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3190, 206, F3, 3, 126) (dual of [(206, 3), 428, 127]-NRT-code) | [i] | ||
7 | No linear OOA(3190, 206, F3, 4, 126) (dual of [(206, 4), 634, 127]-NRT-code) | [i] | ||
8 | No linear OOA(3190, 206, F3, 5, 126) (dual of [(206, 5), 840, 127]-NRT-code) | [i] | ||
9 | No digital (64, 190, 206)-net over F3 | [i] | Extracting Embedded Orthogonal Array |