Information on Result #546791
There is no linear OA(3194, 244, F3, 126) (dual of [244, 50, 127]-code), because residual code would yield OA(368, 117, S3, 42), but
- the linear programming bound shows that M ≥ 117688 677034 371150 621267 441012 191945 699509 786586 414202 785608 822882 266942 917131 914689 407902 641112 044580 185151 160708 720843 820397 646660 433506 256247 / 388 484897 528912 368351 403561 573056 452570 889875 851861 940521 311969 565349 433313 959589 947946 383067 599375 798269 567950 > 368 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3195, 245, F3, 127) (dual of [245, 50, 128]-code) | [i] | Truncation | |
2 | No linear OA(3196, 246, F3, 128) (dual of [246, 50, 129]-code) | [i] | ||
3 | No linear OOA(3195, 244, F3, 2, 127) (dual of [(244, 2), 293, 128]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3196, 244, F3, 2, 128) (dual of [(244, 2), 292, 129]-NRT-code) | [i] | ||
5 | No linear OOA(3194, 244, F3, 2, 126) (dual of [(244, 2), 294, 127]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3194, 244, F3, 3, 126) (dual of [(244, 3), 538, 127]-NRT-code) | [i] | ||
7 | No linear OOA(3194, 244, F3, 4, 126) (dual of [(244, 4), 782, 127]-NRT-code) | [i] | ||
8 | No linear OOA(3194, 244, F3, 5, 126) (dual of [(244, 5), 1026, 127]-NRT-code) | [i] | ||
9 | No digital (68, 194, 244)-net over F3 | [i] | Extracting Embedded Orthogonal Array |