Information on Result #546808
There is no linear OA(3195, 214, F3, 129) (dual of [214, 19, 130]-code), because residual code would yield OA(366, 84, S3, 43), but
- the linear programming bound shows that M ≥ 3447 047885 971598 137581 249186 171087 026769 / 88 665115 > 366 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3196, 215, F3, 130) (dual of [215, 19, 131]-code) | [i] | Truncation | |
2 | No linear OA(3197, 216, F3, 131) (dual of [216, 19, 132]-code) | [i] | ||
3 | No linear OOA(3196, 214, F3, 2, 130) (dual of [(214, 2), 232, 131]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3197, 214, F3, 2, 131) (dual of [(214, 2), 231, 132]-NRT-code) | [i] | ||
5 | No linear OOA(3195, 214, F3, 2, 129) (dual of [(214, 2), 233, 130]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3195, 214, F3, 3, 129) (dual of [(214, 3), 447, 130]-NRT-code) | [i] | ||
7 | No linear OOA(3195, 214, F3, 4, 129) (dual of [(214, 4), 661, 130]-NRT-code) | [i] | ||
8 | No linear OOA(3195, 214, F3, 5, 129) (dual of [(214, 5), 875, 130]-NRT-code) | [i] | ||
9 | No digital (66, 195, 214)-net over F3 | [i] | Extracting Embedded Orthogonal Array |