Information on Result #546811
There is no linear OA(3198, 240, F3, 129) (dual of [240, 42, 130]-code), because residual code would yield OA(369, 110, S3, 43), but
- the linear programming bound shows that M ≥ 50 201668 479718 874895 499466 390708 573652 199787 057298 328076 392048 487469 / 56580 236789 640752 964425 611289 453125 > 369 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3199, 241, F3, 130) (dual of [241, 42, 131]-code) | [i] | Truncation | |
2 | No linear OA(3200, 242, F3, 131) (dual of [242, 42, 132]-code) | [i] | ||
3 | No linear OOA(3199, 240, F3, 2, 130) (dual of [(240, 2), 281, 131]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3200, 240, F3, 2, 131) (dual of [(240, 2), 280, 132]-NRT-code) | [i] | ||
5 | No linear OOA(3198, 240, F3, 2, 129) (dual of [(240, 2), 282, 130]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3198, 240, F3, 3, 129) (dual of [(240, 3), 522, 130]-NRT-code) | [i] | ||
7 | No linear OOA(3198, 240, F3, 4, 129) (dual of [(240, 4), 762, 130]-NRT-code) | [i] | ||
8 | No linear OOA(3198, 240, F3, 5, 129) (dual of [(240, 5), 1002, 130]-NRT-code) | [i] | ||
9 | No digital (69, 198, 240)-net over F3 | [i] | Extracting Embedded Orthogonal Array |