Information on Result #546829

There is no linear OA(3198, 210, F3, 132) (dual of [210, 12, 133]-code), because residual code would yield OA(366, 77, S3, 44), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3199, 211, F3, 133) (dual of [211, 12, 134]-code) [i]Truncation
2No linear OA(3200, 212, F3, 134) (dual of [212, 12, 135]-code) [i]
3No linear OOA(3199, 210, F3, 2, 133) (dual of [(210, 2), 221, 134]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3200, 210, F3, 2, 134) (dual of [(210, 2), 220, 135]-NRT-code) [i]
5No linear OOA(3198, 210, F3, 2, 132) (dual of [(210, 2), 222, 133]-NRT-code) [i]Depth Reduction
6No linear OOA(3198, 210, F3, 3, 132) (dual of [(210, 3), 432, 133]-NRT-code) [i]
7No linear OOA(3198, 210, F3, 4, 132) (dual of [(210, 4), 642, 133]-NRT-code) [i]
8No linear OOA(3198, 210, F3, 5, 132) (dual of [(210, 5), 852, 133]-NRT-code) [i]
9No digital (66, 198, 210)-net over F3 [i]Extracting Embedded Orthogonal Array