Information on Result #546832
There is no linear OA(3201, 229, F3, 132) (dual of [229, 28, 133]-code), because residual code would yield OA(369, 96, S3, 44), but
- the linear programming bound shows that M ≥ 11 111137 980760 260835 033973 550527 613477 874551 825933 / 12401 847027 543181 > 369 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3202, 230, F3, 133) (dual of [230, 28, 134]-code) | [i] | Truncation | |
2 | No linear OA(3203, 231, F3, 134) (dual of [231, 28, 135]-code) | [i] | ||
3 | No linear OOA(3202, 229, F3, 2, 133) (dual of [(229, 2), 256, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3203, 229, F3, 2, 134) (dual of [(229, 2), 255, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3201, 229, F3, 2, 132) (dual of [(229, 2), 257, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3201, 229, F3, 3, 132) (dual of [(229, 3), 486, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3201, 229, F3, 4, 132) (dual of [(229, 4), 715, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3201, 229, F3, 5, 132) (dual of [(229, 5), 944, 133]-NRT-code) | [i] | ||
9 | No digital (69, 201, 229)-net over F3 | [i] | Extracting Embedded Orthogonal Array |