Information on Result #546835
There is no linear OA(3204, 262, F3, 132) (dual of [262, 58, 133]-code), because residual code would yield OA(372, 129, S3, 44), but
- the linear programming bound shows that M ≥ 44581 042680 190201 424193 831840 753900 670798 725450 637402 342191 554654 268694 860799 351692 628249 035083 768310 785141 170441 602743 910081 150638 796780 311369 419178 341421 989330 024725 427166 876875 682423 121951 240264 500151 / 1 947482 853721 425586 922187 925058 224422 649757 526790 464738 458184 631778 914633 064948 606561 512864 131931 488340 022430 458898 125986 767827 041137 500285 991795 319155 347570 902673 254730 > 372 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3205, 263, F3, 133) (dual of [263, 58, 134]-code) | [i] | Truncation | |
2 | No linear OA(3206, 264, F3, 134) (dual of [264, 58, 135]-code) | [i] | ||
3 | No linear OOA(3205, 262, F3, 2, 133) (dual of [(262, 2), 319, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3206, 262, F3, 2, 134) (dual of [(262, 2), 318, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3204, 262, F3, 2, 132) (dual of [(262, 2), 320, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3204, 262, F3, 3, 132) (dual of [(262, 3), 582, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3204, 262, F3, 4, 132) (dual of [(262, 4), 844, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3204, 262, F3, 5, 132) (dual of [(262, 5), 1106, 133]-NRT-code) | [i] | ||
9 | No digital (72, 204, 262)-net over F3 | [i] | Extracting Embedded Orthogonal Array |