Information on Result #546835

There is no linear OA(3204, 262, F3, 132) (dual of [262, 58, 133]-code), because residual code would yield OA(372, 129, S3, 44), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3205, 263, F3, 133) (dual of [263, 58, 134]-code) [i]Truncation
2No linear OA(3206, 264, F3, 134) (dual of [264, 58, 135]-code) [i]
3No linear OOA(3205, 262, F3, 2, 133) (dual of [(262, 2), 319, 134]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3206, 262, F3, 2, 134) (dual of [(262, 2), 318, 135]-NRT-code) [i]
5No linear OOA(3204, 262, F3, 2, 132) (dual of [(262, 2), 320, 133]-NRT-code) [i]Depth Reduction
6No linear OOA(3204, 262, F3, 3, 132) (dual of [(262, 3), 582, 133]-NRT-code) [i]
7No linear OOA(3204, 262, F3, 4, 132) (dual of [(262, 4), 844, 133]-NRT-code) [i]
8No linear OOA(3204, 262, F3, 5, 132) (dual of [(262, 5), 1106, 133]-NRT-code) [i]
9No digital (72, 204, 262)-net over F3 [i]Extracting Embedded Orthogonal Array