Information on Result #546839
There is no linear OA(3210, 348, F3, 132) (dual of [348, 138, 133]-code), because residual code would yield OA(378, 215, S3, 44), but
- 2 times truncation [i] would yield OA(376, 213, S3, 42), but
- the linear programming bound shows that M ≥ 24139 354386 854363 147378 476124 618112 504428 827791 667688 382538 767752 602863 057296 834401 801307 804700 / 12846 980782 406505 841743 696059 469546 157683 736221 588601 551817 > 376 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3211, 349, F3, 133) (dual of [349, 138, 134]-code) | [i] | Truncation | |
2 | No linear OA(3212, 350, F3, 134) (dual of [350, 138, 135]-code) | [i] | ||
3 | No linear OOA(3211, 348, F3, 2, 133) (dual of [(348, 2), 485, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3212, 348, F3, 2, 134) (dual of [(348, 2), 484, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3210, 348, F3, 2, 132) (dual of [(348, 2), 486, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3210, 348, F3, 3, 132) (dual of [(348, 3), 834, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3210, 348, F3, 4, 132) (dual of [(348, 4), 1182, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3210, 348, F3, 5, 132) (dual of [(348, 5), 1530, 133]-NRT-code) | [i] | ||
9 | No digital (78, 210, 348)-net over F3 | [i] | Extracting Embedded Orthogonal Array |