Information on Result #546880
There is no linear OA(3210, 236, F3, 138) (dual of [236, 26, 139]-code), because residual code would yield OA(372, 97, S3, 46), but
- the linear programming bound shows that M ≥ 27848 335335 870397 950530 479039 339751 613066 604593 / 1 016088 552625 > 372 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3211, 237, F3, 139) (dual of [237, 26, 140]-code) | [i] | Truncation | |
2 | No linear OA(3212, 238, F3, 140) (dual of [238, 26, 141]-code) | [i] | ||
3 | No linear OOA(3211, 236, F3, 2, 139) (dual of [(236, 2), 261, 140]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3212, 236, F3, 2, 140) (dual of [(236, 2), 260, 141]-NRT-code) | [i] | ||
5 | No linear OOA(3210, 236, F3, 2, 138) (dual of [(236, 2), 262, 139]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3210, 236, F3, 3, 138) (dual of [(236, 3), 498, 139]-NRT-code) | [i] | ||
7 | No linear OOA(3210, 236, F3, 4, 138) (dual of [(236, 4), 734, 139]-NRT-code) | [i] | ||
8 | No linear OOA(3210, 236, F3, 5, 138) (dual of [(236, 5), 970, 139]-NRT-code) | [i] | ||
9 | No digital (72, 210, 236)-net over F3 | [i] | Extracting Embedded Orthogonal Array |