Information on Result #546907
There is no linear OA(3214, 237, F3, 141) (dual of [237, 23, 142]-code), because residual code would yield OA(373, 95, S3, 47), but
- the linear programming bound shows that M ≥ 27415 488609 479960 623517 399135 351947 419683 757237 / 296601 469736 > 373 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3215, 238, F3, 142) (dual of [238, 23, 143]-code) | [i] | Truncation | |
2 | No linear OA(3216, 239, F3, 143) (dual of [239, 23, 144]-code) | [i] | ||
3 | No linear OOA(3215, 237, F3, 2, 142) (dual of [(237, 2), 259, 143]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3216, 237, F3, 2, 143) (dual of [(237, 2), 258, 144]-NRT-code) | [i] | ||
5 | No linear OOA(3214, 237, F3, 2, 141) (dual of [(237, 2), 260, 142]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3214, 237, F3, 3, 141) (dual of [(237, 3), 497, 142]-NRT-code) | [i] | ||
7 | No linear OOA(3214, 237, F3, 4, 141) (dual of [(237, 4), 734, 142]-NRT-code) | [i] | ||
8 | No linear OOA(3214, 237, F3, 5, 141) (dual of [(237, 5), 971, 142]-NRT-code) | [i] | ||
9 | No digital (73, 214, 237)-net over F3 | [i] | Extracting Embedded Orthogonal Array |