Information on Result #546910
There is no linear OA(3217, 263, F3, 141) (dual of [263, 46, 142]-code), because residual code would yield OA(376, 121, S3, 47), but
- the linear programming bound shows that M ≥ 75 330660 326859 483146 711841 769969 417414 924993 897075 238905 711041 253960 166094 / 40 699162 450761 949016 181559 891872 548125 > 376 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3218, 264, F3, 142) (dual of [264, 46, 143]-code) | [i] | Truncation | |
2 | No linear OA(3219, 265, F3, 143) (dual of [265, 46, 144]-code) | [i] | ||
3 | No linear OOA(3218, 263, F3, 2, 142) (dual of [(263, 2), 308, 143]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3219, 263, F3, 2, 143) (dual of [(263, 2), 307, 144]-NRT-code) | [i] | ||
5 | No linear OOA(3217, 263, F3, 2, 141) (dual of [(263, 2), 309, 142]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3217, 263, F3, 3, 141) (dual of [(263, 3), 572, 142]-NRT-code) | [i] | ||
7 | No linear OOA(3217, 263, F3, 4, 141) (dual of [(263, 4), 835, 142]-NRT-code) | [i] | ||
8 | No linear OOA(3217, 263, F3, 5, 141) (dual of [(263, 5), 1098, 142]-NRT-code) | [i] | ||
9 | No digital (76, 217, 263)-net over F3 | [i] | Extracting Embedded Orthogonal Array |