Information on Result #546911
There is no linear OA(3218, 276, F3, 141) (dual of [276, 58, 142]-code), because residual code would yield OA(377, 134, S3, 47), but
- the linear programming bound shows that M ≥ 31236 591023 689523 843864 258795 794381 842103 247152 915086 771555 946190 288825 670659 102469 973096 140429 956444 447581 049677 442890 308123 300312 980588 248821 322777 564200 397033 977609 400321 113204 805677 / 5026 885389 120228 713831 647528 228319 607978 045533 144673 042272 411768 160785 090938 677170 226173 137132 119010 838451 021027 675235 968212 837184 812919 739370 536960 > 377 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3219, 277, F3, 142) (dual of [277, 58, 143]-code) | [i] | Truncation | |
2 | No linear OA(3220, 278, F3, 143) (dual of [278, 58, 144]-code) | [i] | ||
3 | No linear OOA(3219, 276, F3, 2, 142) (dual of [(276, 2), 333, 143]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3220, 276, F3, 2, 143) (dual of [(276, 2), 332, 144]-NRT-code) | [i] | ||
5 | No linear OOA(3218, 276, F3, 2, 141) (dual of [(276, 2), 334, 142]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3218, 276, F3, 3, 141) (dual of [(276, 3), 610, 142]-NRT-code) | [i] | ||
7 | No linear OOA(3218, 276, F3, 4, 141) (dual of [(276, 4), 886, 142]-NRT-code) | [i] | ||
8 | No linear OOA(3218, 276, F3, 5, 141) (dual of [(276, 5), 1162, 142]-NRT-code) | [i] | ||
9 | No digital (77, 218, 276)-net over F3 | [i] | Extracting Embedded Orthogonal Array |