Information on Result #546939
There is no linear OA(3224, 342, F3, 144) (dual of [342, 118, 145]-code), because residual code would yield OA(380, 197, S3, 48), but
- 6 times truncation [i] would yield OA(374, 191, S3, 42), but
- the linear programming bound shows that M ≥ 7425 373872 326041 246958 413277 162396 664697 868093 270451 580073 051722 485491 109207 030427 537458 984375 / 32911 891840 780579 755648 777011 603243 208306 897748 202179 983781 > 374 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3225, 343, F3, 145) (dual of [343, 118, 146]-code) | [i] | Truncation | |
2 | No linear OA(3226, 344, F3, 146) (dual of [344, 118, 147]-code) | [i] | ||
3 | No linear OOA(3225, 342, F3, 2, 145) (dual of [(342, 2), 459, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3226, 342, F3, 2, 146) (dual of [(342, 2), 458, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3224, 342, F3, 2, 144) (dual of [(342, 2), 460, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3224, 342, F3, 3, 144) (dual of [(342, 3), 802, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3224, 342, F3, 4, 144) (dual of [(342, 4), 1144, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3224, 342, F3, 5, 144) (dual of [(342, 5), 1486, 145]-NRT-code) | [i] | ||
9 | No digital (80, 224, 342)-net over F3 | [i] | Extracting Embedded Orthogonal Array |