Information on Result #546940
There is no linear OA(3225, 351, F3, 144) (dual of [351, 126, 145]-code), because residual code would yield linear OA(381, 206, F3, 48) (dual of [206, 125, 49]-code), but
- the Johnson bound shows that N ≤ 390067 621362 525166 675859 888729 736992 372634 079787 564789 713745 < 3125 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3226, 352, F3, 145) (dual of [352, 126, 146]-code) | [i] | Truncation | |
2 | No linear OA(3227, 353, F3, 146) (dual of [353, 126, 147]-code) | [i] | ||
3 | No linear OOA(3226, 351, F3, 2, 145) (dual of [(351, 2), 476, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3227, 351, F3, 2, 146) (dual of [(351, 2), 475, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3225, 351, F3, 2, 144) (dual of [(351, 2), 477, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3225, 351, F3, 3, 144) (dual of [(351, 3), 828, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3225, 351, F3, 4, 144) (dual of [(351, 4), 1179, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3225, 351, F3, 5, 144) (dual of [(351, 5), 1530, 145]-NRT-code) | [i] | ||
9 | No digital (81, 225, 351)-net over F3 | [i] | Extracting Embedded Orthogonal Array |