Information on Result #546943
There is no linear OA(3228, 380, F3, 144) (dual of [380, 152, 145]-code), because residual code would yield linear OA(384, 235, F3, 48) (dual of [235, 151, 49]-code), but
- the Johnson bound shows that N ≤ 1 014891 606187 829584 057582 115648 929135 604017 524062 355605 507975 062077 667701 < 3151 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3229, 381, F3, 145) (dual of [381, 152, 146]-code) | [i] | Truncation | |
2 | No linear OA(3230, 382, F3, 146) (dual of [382, 152, 147]-code) | [i] | ||
3 | No linear OOA(3229, 380, F3, 2, 145) (dual of [(380, 2), 531, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3230, 380, F3, 2, 146) (dual of [(380, 2), 530, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3228, 380, F3, 2, 144) (dual of [(380, 2), 532, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3228, 380, F3, 3, 144) (dual of [(380, 3), 912, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3228, 380, F3, 4, 144) (dual of [(380, 4), 1292, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3228, 380, F3, 5, 144) (dual of [(380, 5), 1672, 145]-NRT-code) | [i] | ||
9 | No digital (84, 228, 380)-net over F3 | [i] | Extracting Embedded Orthogonal Array |