Information on Result #546962
There is no linear OA(3223, 245, F3, 147) (dual of [245, 22, 148]-code), because residual code would yield OA(376, 97, S3, 49), but
- the linear programming bound shows that M ≥ 66 667260 167200 192792 582029 034457 444120 479902 391671 / 35 100724 925000 > 376 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3224, 246, F3, 148) (dual of [246, 22, 149]-code) | [i] | Truncation | |
2 | No linear OA(3225, 247, F3, 149) (dual of [247, 22, 150]-code) | [i] | ||
3 | No linear OOA(3224, 245, F3, 2, 148) (dual of [(245, 2), 266, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3225, 245, F3, 2, 149) (dual of [(245, 2), 265, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3223, 245, F3, 2, 147) (dual of [(245, 2), 267, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3223, 245, F3, 3, 147) (dual of [(245, 3), 512, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3223, 245, F3, 4, 147) (dual of [(245, 4), 757, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3223, 245, F3, 5, 147) (dual of [(245, 5), 1002, 148]-NRT-code) | [i] | ||
9 | No digital (76, 223, 245)-net over F3 | [i] | Extracting Embedded Orthogonal Array |