Information on Result #546963
There is no linear OA(3224, 251, F3, 147) (dual of [251, 27, 148]-code), because residual code would yield OA(377, 103, S3, 49), but
- the linear programming bound shows that M ≥ 8470 149378 157269 771857 894429 320739 143641 791503 335921 / 1479 143206 662100 > 377 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3225, 252, F3, 148) (dual of [252, 27, 149]-code) | [i] | Truncation | |
2 | No linear OA(3226, 253, F3, 149) (dual of [253, 27, 150]-code) | [i] | ||
3 | No linear OOA(3225, 251, F3, 2, 148) (dual of [(251, 2), 277, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3226, 251, F3, 2, 149) (dual of [(251, 2), 276, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3224, 251, F3, 2, 147) (dual of [(251, 2), 278, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3224, 251, F3, 3, 147) (dual of [(251, 3), 529, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3224, 251, F3, 4, 147) (dual of [(251, 4), 780, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3224, 251, F3, 5, 147) (dual of [(251, 5), 1031, 148]-NRT-code) | [i] | ||
9 | No digital (77, 224, 251)-net over F3 | [i] | Extracting Embedded Orthogonal Array |