Information on Result #546964
There is no linear OA(3225, 260, F3, 147) (dual of [260, 35, 148]-code), because residual code would yield OA(378, 112, S3, 49), but
- the linear programming bound shows that M ≥ 23121 339982 129752 217216 969972 698951 685311 859808 619791 997981 / 1328 024731 338747 547105 > 378 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3226, 261, F3, 148) (dual of [261, 35, 149]-code) | [i] | Truncation | |
2 | No linear OA(3227, 262, F3, 149) (dual of [262, 35, 150]-code) | [i] | ||
3 | No linear OOA(3226, 260, F3, 2, 148) (dual of [(260, 2), 294, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3227, 260, F3, 2, 149) (dual of [(260, 2), 293, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3225, 260, F3, 2, 147) (dual of [(260, 2), 295, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3225, 260, F3, 3, 147) (dual of [(260, 3), 555, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3225, 260, F3, 4, 147) (dual of [(260, 4), 815, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3225, 260, F3, 5, 147) (dual of [(260, 5), 1075, 148]-NRT-code) | [i] | ||
9 | No digital (78, 225, 260)-net over F3 | [i] | Extracting Embedded Orthogonal Array |