Information on Result #546965
There is no linear OA(3226, 270, F3, 147) (dual of [270, 44, 148]-code), because residual code would yield OA(379, 122, S3, 49), but
- the linear programming bound shows that M ≥ 2 696619 084610 776501 344031 056269 137248 595352 418845 365791 957429 212653 / 47840 556342 766214 122108 158565 > 379 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3227, 271, F3, 148) (dual of [271, 44, 149]-code) | [i] | Truncation | |
2 | No linear OA(3228, 272, F3, 149) (dual of [272, 44, 150]-code) | [i] | ||
3 | No linear OOA(3227, 270, F3, 2, 148) (dual of [(270, 2), 313, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3228, 270, F3, 2, 149) (dual of [(270, 2), 312, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3226, 270, F3, 2, 147) (dual of [(270, 2), 314, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3226, 270, F3, 3, 147) (dual of [(270, 3), 584, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3226, 270, F3, 4, 147) (dual of [(270, 4), 854, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3226, 270, F3, 5, 147) (dual of [(270, 5), 1124, 148]-NRT-code) | [i] | ||
9 | No digital (79, 226, 270)-net over F3 | [i] | Extracting Embedded Orthogonal Array |