Information on Result #546968
There is no linear OA(3229, 355, F3, 147) (dual of [355, 126, 148]-code), because residual code would yield linear OA(382, 207, F3, 49) (dual of [207, 125, 50]-code), but
- 1 times truncation [i] would yield linear OA(381, 206, F3, 48) (dual of [206, 125, 49]-code), but
- the Johnson bound shows that N ≤ 390067 621362 525166 675859 888729 736992 372634 079787 564789 713745 < 3125 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3230, 356, F3, 148) (dual of [356, 126, 149]-code) | [i] | Truncation | |
2 | No linear OA(3231, 357, F3, 149) (dual of [357, 126, 150]-code) | [i] | ||
3 | No linear OOA(3230, 355, F3, 2, 148) (dual of [(355, 2), 480, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3231, 355, F3, 2, 149) (dual of [(355, 2), 479, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3229, 355, F3, 2, 147) (dual of [(355, 2), 481, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3229, 355, F3, 3, 147) (dual of [(355, 3), 836, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3229, 355, F3, 4, 147) (dual of [(355, 4), 1191, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3229, 355, F3, 5, 147) (dual of [(355, 5), 1546, 148]-NRT-code) | [i] | ||
9 | No digital (82, 229, 355)-net over F3 | [i] | Extracting Embedded Orthogonal Array |