Information on Result #546970
There is no linear OA(3231, 373, F3, 147) (dual of [373, 142, 148]-code), because residual code would yield linear OA(384, 225, F3, 49) (dual of [225, 141, 50]-code), but
- 1 times truncation [i] would yield linear OA(383, 224, F3, 48) (dual of [224, 141, 49]-code), but
- the Johnson bound shows that N ≤ 18 650275 231410 181575 562142 123676 906294 083572 717553 183697 141026 684466 < 3141 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3232, 374, F3, 148) (dual of [374, 142, 149]-code) | [i] | Truncation | |
2 | No linear OA(3233, 375, F3, 149) (dual of [375, 142, 150]-code) | [i] | ||
3 | No linear OOA(3232, 373, F3, 2, 148) (dual of [(373, 2), 514, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3233, 373, F3, 2, 149) (dual of [(373, 2), 513, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3231, 373, F3, 2, 147) (dual of [(373, 2), 515, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3231, 373, F3, 3, 147) (dual of [(373, 3), 888, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3231, 373, F3, 4, 147) (dual of [(373, 4), 1261, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3231, 373, F3, 5, 147) (dual of [(373, 5), 1634, 148]-NRT-code) | [i] | ||
9 | No digital (84, 231, 373)-net over F3 | [i] | Extracting Embedded Orthogonal Array |