Information on Result #546971
There is no linear OA(3232, 384, F3, 147) (dual of [384, 152, 148]-code), because residual code would yield linear OA(385, 236, F3, 49) (dual of [236, 151, 50]-code), but
- 1 times truncation [i] would yield linear OA(384, 235, F3, 48) (dual of [235, 151, 49]-code), but
- the Johnson bound shows that N ≤ 1 014891 606187 829584 057582 115648 929135 604017 524062 355605 507975 062077 667701 < 3151 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3233, 385, F3, 148) (dual of [385, 152, 149]-code) | [i] | Truncation | |
2 | No linear OA(3234, 386, F3, 149) (dual of [386, 152, 150]-code) | [i] | ||
3 | No linear OOA(3233, 384, F3, 2, 148) (dual of [(384, 2), 535, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3234, 384, F3, 2, 149) (dual of [(384, 2), 534, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3232, 384, F3, 2, 147) (dual of [(384, 2), 536, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3232, 384, F3, 3, 147) (dual of [(384, 3), 920, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3232, 384, F3, 4, 147) (dual of [(384, 4), 1304, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3232, 384, F3, 5, 147) (dual of [(384, 5), 1688, 148]-NRT-code) | [i] | ||
9 | No digital (85, 232, 384)-net over F3 | [i] | Extracting Embedded Orthogonal Array |