Information on Result #546995
There is no linear OA(3232, 290, F3, 150) (dual of [290, 58, 151]-code), because residual code would yield OA(382, 139, S3, 50), but
- the linear programming bound shows that M ≥ 1587 399042 866016 986303 890803 537138 245492 206166 258555 218457 073292 762725 146456 195326 962155 694534 950498 243860 513481 979544 181045 609868 510228 655317 898137 944968 273836 801278 213469 / 1 121662 775947 035202 501592 579753 339451 946215 941077 958998 362092 006927 786507 022495 318993 197038 312138 033878 088343 981406 194796 277022 130176 > 382 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3233, 291, F3, 151) (dual of [291, 58, 152]-code) | [i] | Truncation | |
2 | No linear OA(3234, 292, F3, 152) (dual of [292, 58, 153]-code) | [i] | ||
3 | No linear OOA(3233, 290, F3, 2, 151) (dual of [(290, 2), 347, 152]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3234, 290, F3, 2, 152) (dual of [(290, 2), 346, 153]-NRT-code) | [i] | ||
5 | No linear OOA(3232, 290, F3, 2, 150) (dual of [(290, 2), 348, 151]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3232, 290, F3, 3, 150) (dual of [(290, 3), 638, 151]-NRT-code) | [i] | ||
7 | No linear OOA(3232, 290, F3, 4, 150) (dual of [(290, 4), 928, 151]-NRT-code) | [i] | ||
8 | No linear OOA(3232, 290, F3, 5, 150) (dual of [(290, 5), 1218, 151]-NRT-code) | [i] | ||
9 | No digital (82, 232, 290)-net over F3 | [i] | Extracting Embedded Orthogonal Array |