Information on Result #546996
There is no linear OA(3233, 353, F3, 150) (dual of [353, 120, 151]-code), because residual code would yield linear OA(383, 202, F3, 50) (dual of [202, 119, 51]-code), but
- the Johnson bound shows that N ≤ 550 972990 432084 950775 442566 323188 109097 170341 593919 868682 < 3119 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3234, 354, F3, 151) (dual of [354, 120, 152]-code) | [i] | Truncation | |
2 | No linear OA(3235, 355, F3, 152) (dual of [355, 120, 153]-code) | [i] | ||
3 | No linear OOA(3234, 353, F3, 2, 151) (dual of [(353, 2), 472, 152]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3235, 353, F3, 2, 152) (dual of [(353, 2), 471, 153]-NRT-code) | [i] | ||
5 | No linear OOA(3233, 353, F3, 2, 150) (dual of [(353, 2), 473, 151]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3233, 353, F3, 3, 150) (dual of [(353, 3), 826, 151]-NRT-code) | [i] | ||
7 | No linear OOA(3233, 353, F3, 4, 150) (dual of [(353, 4), 1179, 151]-NRT-code) | [i] | ||
8 | No linear OOA(3233, 353, F3, 5, 150) (dual of [(353, 5), 1532, 151]-NRT-code) | [i] | ||
9 | No digital (83, 233, 353)-net over F3 | [i] | Extracting Embedded Orthogonal Array |