Information on Result #547026
There is no linear OA(3239, 375, F3, 153) (dual of [375, 136, 154]-code), because residual code would yield linear OA(386, 221, F3, 51) (dual of [221, 135, 52]-code), but
- 1 times truncation [i] would yield linear OA(385, 220, F3, 50) (dual of [220, 135, 51]-code), but
- the Johnson bound shows that N ≤ 22905 993227 448745 319194 488151 012424 723463 351500 755461 393112 800141 < 3135 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3240, 376, F3, 154) (dual of [376, 136, 155]-code) | [i] | Truncation | |
2 | No linear OA(3241, 377, F3, 155) (dual of [377, 136, 156]-code) | [i] | ||
3 | No linear OOA(3240, 375, F3, 2, 154) (dual of [(375, 2), 510, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3241, 375, F3, 2, 155) (dual of [(375, 2), 509, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3239, 375, F3, 2, 153) (dual of [(375, 2), 511, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3239, 375, F3, 3, 153) (dual of [(375, 3), 886, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3239, 375, F3, 4, 153) (dual of [(375, 4), 1261, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3239, 375, F3, 5, 153) (dual of [(375, 5), 1636, 154]-NRT-code) | [i] | ||
9 | No digital (86, 239, 375)-net over F3 | [i] | Extracting Embedded Orthogonal Array |