Information on Result #547047
There is no linear OA(3240, 284, F3, 156) (dual of [284, 44, 157]-code), because residual code would yield OA(384, 127, S3, 52), but
- the linear programming bound shows that M ≥ 75093 992178 172944 979964 312324 767811 438315 782053 828257 111860 508367 900579 / 6 152332 044204 270968 974779 651985 > 384 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3241, 285, F3, 157) (dual of [285, 44, 158]-code) | [i] | Truncation | |
2 | No linear OA(3242, 286, F3, 158) (dual of [286, 44, 159]-code) | [i] | ||
3 | No linear OOA(3241, 284, F3, 2, 157) (dual of [(284, 2), 327, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3242, 284, F3, 2, 158) (dual of [(284, 2), 326, 159]-NRT-code) | [i] | ||
5 | No linear OOA(3240, 284, F3, 2, 156) (dual of [(284, 2), 328, 157]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3240, 284, F3, 3, 156) (dual of [(284, 3), 612, 157]-NRT-code) | [i] | ||
7 | No linear OOA(3240, 284, F3, 4, 156) (dual of [(284, 4), 896, 157]-NRT-code) | [i] | ||
8 | No linear OOA(3240, 284, F3, 5, 156) (dual of [(284, 5), 1180, 157]-NRT-code) | [i] | ||
9 | No digital (84, 240, 284)-net over F3 | [i] | Extracting Embedded Orthogonal Array |