Information on Result #547051
There is no linear OA(3244, 381, F3, 156) (dual of [381, 137, 157]-code), because residual code would yield linear OA(388, 224, F3, 52) (dual of [224, 136, 53]-code), but
- the Johnson bound shows that N ≤ 73138 750163 909178 998184 764057 381403 209399 446777 305834 354572 535302 < 3136 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3245, 382, F3, 157) (dual of [382, 137, 158]-code) | [i] | Truncation | |
2 | No linear OA(3246, 383, F3, 158) (dual of [383, 137, 159]-code) | [i] | ||
3 | No linear OOA(3245, 381, F3, 2, 157) (dual of [(381, 2), 517, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3246, 381, F3, 2, 158) (dual of [(381, 2), 516, 159]-NRT-code) | [i] | ||
5 | No linear OOA(3244, 381, F3, 2, 156) (dual of [(381, 2), 518, 157]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3244, 381, F3, 3, 156) (dual of [(381, 3), 899, 157]-NRT-code) | [i] | ||
7 | No linear OOA(3244, 381, F3, 4, 156) (dual of [(381, 4), 1280, 157]-NRT-code) | [i] | ||
8 | No linear OOA(3244, 381, F3, 5, 156) (dual of [(381, 5), 1661, 157]-NRT-code) | [i] | ||
9 | No digital (88, 244, 381)-net over F3 | [i] | Extracting Embedded Orthogonal Array |