Information on Result #547052
There is no linear OA(3245, 390, F3, 156) (dual of [390, 145, 157]-code), because residual code would yield linear OA(389, 233, F3, 52) (dual of [233, 144, 53]-code), but
- the Johnson bound shows that N ≤ 495 041572 388827 382337 917134 411719 483784 605757 670798 500294 630099 278193 < 3144 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3246, 391, F3, 157) (dual of [391, 145, 158]-code) | [i] | Truncation | |
2 | No linear OA(3247, 392, F3, 158) (dual of [392, 145, 159]-code) | [i] | ||
3 | No linear OOA(3246, 390, F3, 2, 157) (dual of [(390, 2), 534, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3247, 390, F3, 2, 158) (dual of [(390, 2), 533, 159]-NRT-code) | [i] | ||
5 | No linear OOA(3245, 390, F3, 2, 156) (dual of [(390, 2), 535, 157]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3245, 390, F3, 3, 156) (dual of [(390, 3), 925, 157]-NRT-code) | [i] | ||
7 | No linear OOA(3245, 390, F3, 4, 156) (dual of [(390, 4), 1315, 157]-NRT-code) | [i] | ||
8 | No linear OOA(3245, 390, F3, 5, 156) (dual of [(390, 5), 1705, 157]-NRT-code) | [i] | ||
9 | No digital (89, 245, 390)-net over F3 | [i] | Extracting Embedded Orthogonal Array |