Information on Result #547061
There is no linear OA(3238, 250, F3, 159) (dual of [250, 12, 160]-code), because residual code would yield OA(379, 90, S3, 53), but
- 1 times truncation [i] would yield OA(378, 89, S3, 52), but
- the linear programming bound shows that M ≥ 298 630446 198644 459587 118144 486403 305957 001183 / 16 135903 > 378 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3239, 251, F3, 160) (dual of [251, 12, 161]-code) | [i] | Truncation | |
2 | No linear OA(3240, 252, F3, 161) (dual of [252, 12, 162]-code) | [i] | ||
3 | No linear OOA(3239, 250, F3, 2, 160) (dual of [(250, 2), 261, 161]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3240, 250, F3, 2, 161) (dual of [(250, 2), 260, 162]-NRT-code) | [i] | ||
5 | No linear OOA(3238, 250, F3, 2, 159) (dual of [(250, 2), 262, 160]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3238, 250, F3, 3, 159) (dual of [(250, 3), 512, 160]-NRT-code) | [i] | ||
7 | No linear OOA(3238, 250, F3, 4, 159) (dual of [(250, 4), 762, 160]-NRT-code) | [i] | ||
8 | No linear OOA(3238, 250, F3, 5, 159) (dual of [(250, 5), 1012, 160]-NRT-code) | [i] | ||
9 | No digital (79, 238, 250)-net over F3 | [i] | Extracting Embedded Orthogonal Array |