Information on Result #547063
There is no linear OA(3240, 256, F3, 159) (dual of [256, 16, 160]-code), because residual code would yield OA(381, 96, S3, 53), but
- the linear programming bound shows that M ≥ 35667 308007 855330 590206 634210 852728 315487 161419 / 70 241195 > 381 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3241, 257, F3, 160) (dual of [257, 16, 161]-code) | [i] | Truncation | |
2 | No linear OA(3242, 258, F3, 161) (dual of [258, 16, 162]-code) | [i] | ||
3 | No linear OOA(3241, 256, F3, 2, 160) (dual of [(256, 2), 271, 161]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3242, 256, F3, 2, 161) (dual of [(256, 2), 270, 162]-NRT-code) | [i] | ||
5 | No linear OOA(3240, 256, F3, 2, 159) (dual of [(256, 2), 272, 160]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3240, 256, F3, 3, 159) (dual of [(256, 3), 528, 160]-NRT-code) | [i] | ||
7 | No linear OOA(3240, 256, F3, 4, 159) (dual of [(256, 4), 784, 160]-NRT-code) | [i] | ||
8 | No linear OOA(3240, 256, F3, 5, 159) (dual of [(256, 5), 1040, 160]-NRT-code) | [i] | ||
9 | No digital (81, 240, 256)-net over F3 | [i] | Extracting Embedded Orthogonal Array |