Information on Result #547071
There is no linear OA(3248, 385, F3, 159) (dual of [385, 137, 160]-code), because residual code would yield linear OA(389, 225, F3, 53) (dual of [225, 136, 54]-code), but
- 1 times truncation [i] would yield linear OA(388, 224, F3, 52) (dual of [224, 136, 53]-code), but
- the Johnson bound shows that N ≤ 73138 750163 909178 998184 764057 381403 209399 446777 305834 354572 535302 < 3136 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3249, 386, F3, 160) (dual of [386, 137, 161]-code) | [i] | Truncation | |
2 | No linear OA(3250, 387, F3, 161) (dual of [387, 137, 162]-code) | [i] | ||
3 | No linear OOA(3249, 385, F3, 2, 160) (dual of [(385, 2), 521, 161]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3250, 385, F3, 2, 161) (dual of [(385, 2), 520, 162]-NRT-code) | [i] | ||
5 | No linear OOA(3248, 385, F3, 2, 159) (dual of [(385, 2), 522, 160]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3248, 385, F3, 3, 159) (dual of [(385, 3), 907, 160]-NRT-code) | [i] | ||
7 | No linear OOA(3248, 385, F3, 4, 159) (dual of [(385, 4), 1292, 160]-NRT-code) | [i] | ||
8 | No linear OOA(3248, 385, F3, 5, 159) (dual of [(385, 5), 1677, 160]-NRT-code) | [i] | ||
9 | No digital (89, 248, 385)-net over F3 | [i] | Extracting Embedded Orthogonal Array |