Information on Result #547087
There is no linear OA(3250, 270, F3, 165) (dual of [270, 20, 166]-code), because residual code would yield OA(385, 104, S3, 55), but
- the linear programming bound shows that M ≥ 4744 075529 079928 845960 058598 807593 969359 823300 884489 / 94629 133984 > 385 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3250, 270, F3, 2, 165) (dual of [(270, 2), 290, 166]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3250, 270, F3, 3, 165) (dual of [(270, 3), 560, 166]-NRT-code) | [i] | ||
3 | No linear OOA(3250, 270, F3, 4, 165) (dual of [(270, 4), 830, 166]-NRT-code) | [i] | ||
4 | No linear OOA(3250, 270, F3, 5, 165) (dual of [(270, 5), 1100, 166]-NRT-code) | [i] | ||
5 | No digital (85, 250, 270)-net over F3 | [i] | Extracting Embedded Orthogonal Array |