Information on Result #547141
There is no linear OA(4147, 210, F4, 108) (dual of [210, 63, 109]-code), because residual code would yield OA(439, 101, S4, 27), but
- the linear programming bound shows that M ≥ 2142 295795 661249 783425 772725 003117 015606 758101 383863 336960 / 7086 731333 443386 538541 653392 431983 > 439 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4148, 211, F4, 109) (dual of [211, 63, 110]-code) | [i] | Truncation | |
2 | No linear OA(4149, 212, F4, 110) (dual of [212, 63, 111]-code) | [i] | ||
3 | No linear OA(4150, 213, F4, 111) (dual of [213, 63, 112]-code) | [i] | ||
4 | No linear OOA(4148, 210, F4, 2, 109) (dual of [(210, 2), 272, 110]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4149, 210, F4, 2, 110) (dual of [(210, 2), 271, 111]-NRT-code) | [i] | ||
6 | No linear OOA(4150, 210, F4, 2, 111) (dual of [(210, 2), 270, 112]-NRT-code) | [i] | ||
7 | No linear OOA(4147, 210, F4, 2, 108) (dual of [(210, 2), 273, 109]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4147, 210, F4, 3, 108) (dual of [(210, 3), 483, 109]-NRT-code) | [i] | ||
9 | No digital (39, 147, 210)-net over F4 | [i] | Extracting Embedded Orthogonal Array |