Information on Result #547207
There is no linear OA(4181, 265, F4, 132) (dual of [265, 84, 133]-code), because residual code would yield OA(449, 132, S4, 33), but
- the linear programming bound shows that M ≥ 15 114989 228406 347488 033746 516185 463747 303837 999665 881936 924009 037824 000000 / 45 404812 302889 192810 925950 053918 027049 414939 > 449 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4182, 266, F4, 133) (dual of [266, 84, 134]-code) | [i] | Truncation | |
2 | No linear OA(4183, 267, F4, 134) (dual of [267, 84, 135]-code) | [i] | ||
3 | No linear OA(4184, 268, F4, 135) (dual of [268, 84, 136]-code) | [i] | ||
4 | No linear OOA(4182, 265, F4, 2, 133) (dual of [(265, 2), 348, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4183, 265, F4, 2, 134) (dual of [(265, 2), 347, 135]-NRT-code) | [i] | ||
6 | No linear OOA(4184, 265, F4, 2, 135) (dual of [(265, 2), 346, 136]-NRT-code) | [i] | ||
7 | No linear OOA(4181, 265, F4, 2, 132) (dual of [(265, 2), 349, 133]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4181, 265, F4, 3, 132) (dual of [(265, 3), 614, 133]-NRT-code) | [i] | ||
9 | No digital (49, 181, 265)-net over F4 | [i] | Extracting Embedded Orthogonal Array |