Information on Result #547245
There is no linear OA(4197, 367, F4, 140) (dual of [367, 170, 141]-code), because residual code would yield OA(457, 226, S4, 35), but
- the linear programming bound shows that M ≥ 206446 636819 354140 257573 963708 426022 937166 140581 505377 357019 798831 104000 / 9 666005 460414 349955 896849 894230 574741 > 457 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4198, 368, F4, 141) (dual of [368, 170, 142]-code) | [i] | Truncation | |
2 | No linear OA(4199, 369, F4, 142) (dual of [369, 170, 143]-code) | [i] | ||
3 | No linear OA(4200, 370, F4, 143) (dual of [370, 170, 144]-code) | [i] | ||
4 | No linear OOA(4198, 367, F4, 2, 141) (dual of [(367, 2), 536, 142]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4199, 367, F4, 2, 142) (dual of [(367, 2), 535, 143]-NRT-code) | [i] | ||
6 | No linear OOA(4200, 367, F4, 2, 143) (dual of [(367, 2), 534, 144]-NRT-code) | [i] | ||
7 | No linear OOA(4197, 367, F4, 2, 140) (dual of [(367, 2), 537, 141]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4197, 367, F4, 3, 140) (dual of [(367, 3), 904, 141]-NRT-code) | [i] | ||
9 | No digital (57, 197, 367)-net over F4 | [i] | Extracting Embedded Orthogonal Array |