Information on Result #547257
There is no linear OA(4196, 264, F4, 144) (dual of [264, 68, 145]-code), because residual code would yield OA(452, 119, S4, 36), but
- the linear programming bound shows that M ≥ 357 859286 624924 007499 700605 808588 465393 308876 978703 840422 989308 837582 985335 138623 209171 597503 690371 497984 / 17 092119 397133 148679 798998 224288 670000 327306 475640 461791 263157 951334 577147 > 452 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4197, 265, F4, 145) (dual of [265, 68, 146]-code) | [i] | Truncation | |
2 | No linear OA(4198, 266, F4, 146) (dual of [266, 68, 147]-code) | [i] | ||
3 | No linear OA(4199, 267, F4, 147) (dual of [267, 68, 148]-code) | [i] | ||
4 | No linear OOA(4197, 264, F4, 2, 145) (dual of [(264, 2), 331, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4198, 264, F4, 2, 146) (dual of [(264, 2), 330, 147]-NRT-code) | [i] | ||
6 | No linear OOA(4199, 264, F4, 2, 147) (dual of [(264, 2), 329, 148]-NRT-code) | [i] | ||
7 | No linear OOA(4196, 264, F4, 2, 144) (dual of [(264, 2), 332, 145]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4196, 264, F4, 3, 144) (dual of [(264, 3), 596, 145]-NRT-code) | [i] | ||
9 | No digital (52, 196, 264)-net over F4 | [i] | Extracting Embedded Orthogonal Array |