Information on Result #547278
There is no linear OA(4203, 293, F4, 148) (dual of [293, 90, 149]-code), because residual code would yield OA(455, 144, S4, 37), but
- the linear programming bound shows that M ≥ 8531 459492 474233 301926 174796 532559 659169 361619 057384 079100 594036 798926 268886 155264 000000 / 6 295882 403116 171983 140577 568447 723788 871703 289647 780291 > 455 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4204, 294, F4, 149) (dual of [294, 90, 150]-code) | [i] | Truncation | |
2 | No linear OA(4205, 295, F4, 150) (dual of [295, 90, 151]-code) | [i] | ||
3 | No linear OA(4206, 296, F4, 151) (dual of [296, 90, 152]-code) | [i] | ||
4 | No linear OOA(4204, 293, F4, 2, 149) (dual of [(293, 2), 382, 150]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4205, 293, F4, 2, 150) (dual of [(293, 2), 381, 151]-NRT-code) | [i] | ||
6 | No linear OOA(4206, 293, F4, 2, 151) (dual of [(293, 2), 380, 152]-NRT-code) | [i] | ||
7 | No linear OOA(4203, 293, F4, 2, 148) (dual of [(293, 2), 383, 149]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4203, 293, F4, 3, 148) (dual of [(293, 3), 676, 149]-NRT-code) | [i] | ||
9 | No digital (55, 203, 293)-net over F4 | [i] | Extracting Embedded Orthogonal Array |