Information on Result #547300
There is no linear OA(4211, 339, F4, 152) (dual of [339, 128, 153]-code), because residual code would yield OA(459, 186, S4, 38), but
- the linear programming bound shows that M ≥ 458116 895032 657940 162336 762311 305276 187123 578098 709475 576222 779546 009600 / 1 358774 703882 919180 099545 580638 520853 > 459 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4212, 340, F4, 153) (dual of [340, 128, 154]-code) | [i] | Truncation | |
2 | No linear OA(4213, 341, F4, 154) (dual of [341, 128, 155]-code) | [i] | ||
3 | No linear OA(4214, 342, F4, 155) (dual of [342, 128, 156]-code) | [i] | ||
4 | No linear OOA(4212, 339, F4, 2, 153) (dual of [(339, 2), 466, 154]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4213, 339, F4, 2, 154) (dual of [(339, 2), 465, 155]-NRT-code) | [i] | ||
6 | No linear OOA(4214, 339, F4, 2, 155) (dual of [(339, 2), 464, 156]-NRT-code) | [i] | ||
7 | No linear OOA(4211, 339, F4, 2, 152) (dual of [(339, 2), 467, 153]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4211, 339, F4, 3, 152) (dual of [(339, 3), 806, 153]-NRT-code) | [i] | ||
9 | No digital (59, 211, 339)-net over F4 | [i] | Extracting Embedded Orthogonal Array |