Information on Result #547342
There is no linear OA(4222, 352, F4, 160) (dual of [352, 130, 161]-code), because residual code would yield OA(462, 191, S4, 40), but
- the linear programming bound shows that M ≥ 6 721352 642212 013290 164202 930663 188729 706683 395933 433874 909615 380474 388774 465686 228242 006016 / 300843 081103 152389 559805 379819 997539 174337 778277 134589 > 462 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4223, 353, F4, 161) (dual of [353, 130, 162]-code) | [i] | Truncation | |
2 | No linear OA(4224, 354, F4, 162) (dual of [354, 130, 163]-code) | [i] | ||
3 | No linear OA(4225, 355, F4, 163) (dual of [355, 130, 164]-code) | [i] | ||
4 | No linear OOA(4223, 352, F4, 2, 161) (dual of [(352, 2), 481, 162]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4224, 352, F4, 2, 162) (dual of [(352, 2), 480, 163]-NRT-code) | [i] | ||
6 | No linear OOA(4225, 352, F4, 2, 163) (dual of [(352, 2), 479, 164]-NRT-code) | [i] | ||
7 | No linear OOA(4222, 352, F4, 2, 160) (dual of [(352, 2), 482, 161]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4222, 352, F4, 3, 160) (dual of [(352, 3), 834, 161]-NRT-code) | [i] | ||
9 | No digital (62, 222, 352)-net over F4 | [i] | Extracting Embedded Orthogonal Array |