Information on Result #547379
There is no linear OA(4225, 244, F4, 168) (dual of [244, 19, 169]-code), because residual code would yield OA(457, 75, S4, 42), but
- the linear programming bound shows that M ≥ 175541 891167 451460 543215 010075 896682 965259 780096 / 6 746458 181029 > 457 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4226, 245, F4, 169) (dual of [245, 19, 170]-code) | [i] | Truncation | |
2 | No linear OA(4227, 246, F4, 170) (dual of [246, 19, 171]-code) | [i] | ||
3 | No linear OA(4228, 247, F4, 171) (dual of [247, 19, 172]-code) | [i] | ||
4 | No linear OOA(4226, 244, F4, 2, 169) (dual of [(244, 2), 262, 170]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4227, 244, F4, 2, 170) (dual of [(244, 2), 261, 171]-NRT-code) | [i] | ||
6 | No linear OOA(4228, 244, F4, 2, 171) (dual of [(244, 2), 260, 172]-NRT-code) | [i] | ||
7 | No linear OOA(4225, 244, F4, 2, 168) (dual of [(244, 2), 263, 169]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4225, 244, F4, 3, 168) (dual of [(244, 3), 507, 169]-NRT-code) | [i] | ||
9 | No digital (57, 225, 244)-net over F4 | [i] | Extracting Embedded Orthogonal Array |