Information on Result #547473
There is no linear OA(4247, 269, F4, 184) (dual of [269, 22, 185]-code), because residual code would yield OA(463, 84, S4, 46), but
- the linear programming bound shows that M ≥ 894450 329286 322020 798598 021001 283152 584338 810439 991296 / 9348 861618 951283 > 463 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4248, 270, F4, 185) (dual of [270, 22, 186]-code) | [i] | Truncation | |
2 | No linear OA(4249, 271, F4, 186) (dual of [271, 22, 187]-code) | [i] | ||
3 | No linear OA(4250, 272, F4, 187) (dual of [272, 22, 188]-code) | [i] | ||
4 | No linear OOA(4248, 269, F4, 2, 185) (dual of [(269, 2), 290, 186]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4249, 269, F4, 2, 186) (dual of [(269, 2), 289, 187]-NRT-code) | [i] | ||
6 | No linear OOA(4250, 269, F4, 2, 187) (dual of [(269, 2), 288, 188]-NRT-code) | [i] | ||
7 | No linear OOA(4247, 269, F4, 2, 184) (dual of [(269, 2), 291, 185]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4247, 269, F4, 3, 184) (dual of [(269, 3), 560, 185]-NRT-code) | [i] | ||
9 | No digital (63, 247, 269)-net over F4 | [i] | Extracting Embedded Orthogonal Array |