Information on Result #547474
There is no linear OA(4248, 282, F4, 184) (dual of [282, 34, 185]-code), because residual code would yield OA(464, 97, S4, 46), but
- the linear programming bound shows that M ≥ 17 551672 443269 830978 915105 133499 110631 230918 120257 846151 906745 909248 / 44694 499640 915429 319268 220967 > 464 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4249, 283, F4, 185) (dual of [283, 34, 186]-code) | [i] | Truncation | |
2 | No linear OA(4250, 284, F4, 186) (dual of [284, 34, 187]-code) | [i] | ||
3 | No linear OA(4251, 285, F4, 187) (dual of [285, 34, 188]-code) | [i] | ||
4 | No linear OOA(4249, 282, F4, 2, 185) (dual of [(282, 2), 315, 186]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4250, 282, F4, 2, 186) (dual of [(282, 2), 314, 187]-NRT-code) | [i] | ||
6 | No linear OOA(4251, 282, F4, 2, 187) (dual of [(282, 2), 313, 188]-NRT-code) | [i] | ||
7 | No linear OOA(4248, 282, F4, 2, 184) (dual of [(282, 2), 316, 185]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4248, 282, F4, 3, 184) (dual of [(282, 3), 598, 185]-NRT-code) | [i] | ||
9 | No digital (64, 248, 282)-net over F4 | [i] | Extracting Embedded Orthogonal Array |