Information on Result #547490
There is no linear OA(4251, 264, F4, 188) (dual of [264, 13, 189]-code), because residual code would yield OA(463, 75, S4, 47), but
- the linear programming bound shows that M ≥ 108 051901 662607 115934 306119 345453 950792 892416 / 1 213839 > 463 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4252, 265, F4, 189) (dual of [265, 13, 190]-code) | [i] | Truncation | |
2 | No linear OA(4253, 266, F4, 190) (dual of [266, 13, 191]-code) | [i] | ||
3 | No linear OA(4254, 267, F4, 191) (dual of [267, 13, 192]-code) | [i] | ||
4 | No linear OOA(4252, 264, F4, 2, 189) (dual of [(264, 2), 276, 190]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4253, 264, F4, 2, 190) (dual of [(264, 2), 275, 191]-NRT-code) | [i] | ||
6 | No linear OOA(4254, 264, F4, 2, 191) (dual of [(264, 2), 274, 192]-NRT-code) | [i] | ||
7 | No linear OOA(4251, 264, F4, 2, 188) (dual of [(264, 2), 277, 189]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4251, 264, F4, 3, 188) (dual of [(264, 3), 541, 189]-NRT-code) | [i] | ||
9 | No digital (63, 251, 264)-net over F4 | [i] | Extracting Embedded Orthogonal Array |