Information on Result #547492
There is no linear OA(4253, 282, F4, 188) (dual of [282, 29, 189]-code), because residual code would yield OA(465, 93, S4, 47), but
- the linear programming bound shows that M ≥ 21198 797041 584828 156035 107346 290870 848231 815238 299697 545216 / 15 452051 535358 751925 > 465 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4254, 283, F4, 189) (dual of [283, 29, 190]-code) | [i] | Truncation | |
2 | No linear OA(4255, 284, F4, 190) (dual of [284, 29, 191]-code) | [i] | ||
3 | No linear OA(4256, 285, F4, 191) (dual of [285, 29, 192]-code) | [i] | ||
4 | No linear OOA(4254, 282, F4, 2, 189) (dual of [(282, 2), 310, 190]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4255, 282, F4, 2, 190) (dual of [(282, 2), 309, 191]-NRT-code) | [i] | ||
6 | No linear OOA(4256, 282, F4, 2, 191) (dual of [(282, 2), 308, 192]-NRT-code) | [i] | ||
7 | No linear OOA(4253, 282, F4, 2, 188) (dual of [(282, 2), 311, 189]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4253, 282, F4, 3, 188) (dual of [(282, 3), 593, 189]-NRT-code) | [i] | ||
9 | No digital (65, 253, 282)-net over F4 | [i] | Extracting Embedded Orthogonal Array |