Information on Result #547502
There is no linear OA(4257, 273, F4, 192) (dual of [273, 16, 193]-code), because residual code would yield OA(465, 80, S4, 48), but
- the linear programming bound shows that M ≥ 11 748891 149276 075699 951965 511184 653803 268463 394816 / 8602 297165 > 465 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4258, 274, F4, 193) (dual of [274, 16, 194]-code) | [i] | Truncation | |
2 | No linear OA(4259, 275, F4, 194) (dual of [275, 16, 195]-code) | [i] | ||
3 | No linear OA(4260, 276, F4, 195) (dual of [276, 16, 196]-code) | [i] | ||
4 | No linear OOA(4258, 273, F4, 2, 193) (dual of [(273, 2), 288, 194]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4259, 273, F4, 2, 194) (dual of [(273, 2), 287, 195]-NRT-code) | [i] | ||
6 | No linear OOA(4260, 273, F4, 2, 195) (dual of [(273, 2), 286, 196]-NRT-code) | [i] | ||
7 | No linear OOA(4257, 273, F4, 2, 192) (dual of [(273, 2), 289, 193]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4257, 273, F4, 3, 192) (dual of [(273, 3), 562, 193]-NRT-code) | [i] | ||
9 | No digital (65, 257, 273)-net over F4 | [i] | Extracting Embedded Orthogonal Array |