Information on Result #547503
There is no linear OA(4258, 283, F4, 192) (dual of [283, 25, 193]-code), because residual code would yield OA(466, 90, S4, 48), but
- the linear programming bound shows that M ≥ 15992 796442 957684 354900 601418 173389 061260 037338 242442 330112 / 2 261259 518366 924075 > 466 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4259, 284, F4, 193) (dual of [284, 25, 194]-code) | [i] | Truncation | |
2 | No linear OA(4260, 285, F4, 194) (dual of [285, 25, 195]-code) | [i] | ||
3 | No linear OOA(4259, 283, F4, 2, 193) (dual of [(283, 2), 307, 194]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(4260, 283, F4, 2, 194) (dual of [(283, 2), 306, 195]-NRT-code) | [i] | ||
5 | No linear OOA(4258, 283, F4, 2, 192) (dual of [(283, 2), 308, 193]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(4258, 283, F4, 3, 192) (dual of [(283, 3), 591, 193]-NRT-code) | [i] | ||
7 | No digital (66, 258, 283)-net over F4 | [i] | Extracting Embedded Orthogonal Array |