Information on Result #547504
There is no linear OA(4259, 295, F4, 192) (dual of [295, 36, 193]-code), because residual code would yield OA(467, 102, S4, 48), but
- the linear programming bound shows that M ≥ 475693 928667 837098 050429 008442 895635 449460 006433 785673 218260 709740 118016 / 19 810806 413080 339108 130487 031223 > 467 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4260, 296, F4, 193) (dual of [296, 36, 194]-code) | [i] | Truncation | |
2 | No linear OOA(4260, 295, F4, 2, 193) (dual of [(295, 2), 330, 194]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(4259, 295, F4, 2, 192) (dual of [(295, 2), 331, 193]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(4259, 295, F4, 3, 192) (dual of [(295, 3), 626, 193]-NRT-code) | [i] | ||
5 | No digital (67, 259, 295)-net over F4 | [i] | Extracting Embedded Orthogonal Array |